Description
Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.
Snippets
Standard import
Bar graph with 3 y-axi
1 x = np.arange(len(df['Index Column'])) # the label locations
2 width = 0.20 # the width of the bars
3
4 fig, ax1 = plt.subplots(figsize=(16,7))
5
6 ax1.bar(x - 1 * width, df['Column A'], width, label='Column A', color='C0')
7 ax1.set_ylabel('Column A', color='C0')
8 ax1.yaxis.label.set_size(18)
9 ax1.set_xticks(x)
10 ax1.set_xticklabels(df['Index Column'], rotation='vertical', size=15)
11 ax1.legend(bbox_to_anchor=(1, 1), prop={'size': 15})
12
13 ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
14 ax2.bar(x * width, df['Column B'], width, label='Column B', color='C1')
15 ax2.set_ylabel('Column B', color='C1')
16 ax2.yaxis.label.set_size(18)
17 ax2.legend(bbox_to_anchor=(1, .9), prop={'size': 15})
18 ax2.spines["right"].set_position(("axes", 1.0))
19
20 ax3 = ax1.twinx()
21 ax3.bar(x + 1 * width, df['Column C'], width, label='Column C', color='C2')
22 #ax3.set_yscale('log')
23 ax3.set_ylabel('Column C', color='C2')
24 ax3.yaxis.label.set_size(18)
25 ax3.legend(bbox_to_anchor=(1, .8), prop={'size': 15})
26 ax3.spines["right"].set_position(("axes", 1.06))
27
28 plt.show()